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Abstract

A systolic algorithm rhythmically computes and passes data through a network of processors. We investigate the

performance of systolic algorithms for implementing the gravitational N-body problem on distributed-memory com-

puters. Systolic algorithms minimize memory requirements by distributing the particles between processors. We show

that the performance of systolic routines can be greatly enhanced by the use of non-blocking communication, which

allows particle coordinates to be communicated at the same time that force calculations are being carried out. The

performance enhancement is particularly great when block sizes are small, i.e., when only a small fraction of the N
particles need their forces computed in each time step. Hyper-systolic algorithms reduce the communication complexity

from OðNpÞ, with p the processor number, to OðN ffiffiffi
p

p Þ, at the expense of increased memory demands. We describe a

hyper-systolic algorithm that will work with a block time step algorithm and analyze its performance. As an example of

an application requiring large N , we use the systolic algorithm to carry out direct-summation simulations using 106

particles of the Brownian motion of the supermassive black hole at the center of the Milky Way galaxy.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Numerical algorithms for solving the gravitational N -body problem have evolved along one of two lines
in recent years. Direct-summation codes compute the complete set of N 2 interparticle forces at each time

step; these codes were designed for systems in which the finite-N graininess of the potential is important,

and are limited by their OðN 2Þ scaling to moderate (N K 105) particle numbers. The best-known examples

are the NBODY series of codes introduced by Aarseth [1]. These codes typically use high-order schemes for

integration of particle trajectories and avoid the force singularities at small interparticle separations either

by softening, or by regularization of the equations of motion [2]. A second class of N -body algorithms

replace the direct summation of forces from distant particles by an approximation scheme. Examples are
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tree codes [3], which reduce the number of direct force calculations by collecting particles in boxes, and

algorithms which represent the large-scale potential via a truncated basis-set expansion (e.g. [4]) or on a grid

(e.g. [5]). These algorithms have a milder, OðN logNÞ scaling for the force calculations and can handle

much larger particle numbers although at some expense in decreased accuracy [6].

The efficiency of both sorts of algorithmcanbe considerably increased by the use of individual time steps for

advancing particle positions, since many astrophysically interesting systems exhibit a ‘‘core-halo’’ structure

characterized by different regions with widely disparate force gradients. An extreme example of a core-halo

system is a galaxy containing a central black hole [7]. The efficiency of individual time steps compared with a
global time step has rendered such schemes standard elements of direct-summation codes (e.g. [8]).

Here we focus on direct-summation algorithms as implemented on multi-processor, distributed-memory

machines. Applications for such codes include simulation of globular star clusters [9], galactic nuclei [10], or

systems of planetesimals orbiting a star [11]. In such systems, the time scale over which the energy of a

particle changes due to near-encounters with other particles is comparable to or shorter than the lifetime of

the system. In most cases, values of N exceeding 105 would be desirable and it is natural to investigate

parallel algorithms. There are two basic ways of implementing a parallel force computation for OðN 2Þ
problems for a computer having p processing elements.

1. Replicated data algorithm. All of the particle information is copied onto each processor at every time

step. Computing node i, 16 i6 p, computes the forces exerted by the entire set of N particles on the

subset of ni ¼ N=p particles assigned to it.

2. Systolic algorithm. At the start of each time step, each computing node contains only N=p particles.

The sub-arrays are shifted sequentially to the other nodes where the partial forces are computed and

stored. After p � 1 such shifts, all of the force pairs have been computed.

(The term ‘‘systolic algorithm’’ was coined by H.T. Kung [12,13] by analogy with blood circulation.) Both

types of algorithm exhibit an OðNpÞ scaling in communication complexity and an OðN 2Þ scaling in number
of computations. The advantage of a systolic algorithm is its more efficient use of memory: since each

processor stores only a fraction 1=p of the particles, the memory requirements are minimized and a larger

number of particles can be integrated. Other advantages of systolic algorithms include elimination of global

broadcasting, modular expansibility, and simple and regular data flows [13].

The performance of a systolic algorithm suffers, however, whenever the number of particles on which

forces are being computed is less than the number of computing nodes. This is often the case in core-halo

systems since only a fraction of the particles are advanced during a typical time step. As an extreme ex-

ample, consider the use of a systolic algorithm to compute the total force on a single particle due to N other
particles. Only one processor is active at a given time and assuming p � 1 then the total computing time for

the blocking algorithm is

tsb ¼ Nsf þ pðsl þ scÞ; ð1Þ

where sf is the time for one force calculation, sl is the latency time required for two processors to establish a

connection, and sc is the interprocessor communication time for transmitting positions, velocities, and

forces. Thus the algorithm is essentially linear and no advantage is gained from having multiple processors.

An efficient way to deal with the problem of small group sizes in systolic algorithms is via nonblocking

communication, a feature of MPI that allows communication to be put in the background so that the
computing nodes can send/receive data and calculate at the same time [14]. In a nonblocking algorithm, the

time per force loop for a single particle tsn becomes assuming p � 1

tsn ¼
Nsf
p

þ pðsl þ scÞ: ð2Þ

The second term is the waiting time for the last computing node to receive the particle after p shifts. The

first term is the time then required to compute the forces from the subset of N=p particles associated with
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the last node. As long as the calculation time is not dominated by interprocessor communication, the

speedup is roughly a factor of p compared with the blocking algorithm.

Here we discuss the performance of systolic algorithms as applied to systems with small group sizes, i.e.,

systems in which the number of particles whose positions are advanced during a typical time step is a small

fraction of the total. Section 2 presents the block time step scheme and its implementation as a systolic

algorithm. Section 3 discusses the factors which affect the algorithm�s performance, and Section 4 presents

the results of performance tests on multi-processor machines of blocking and nonblocking algorithms.

Section 5 presents a preliminary discussion of ‘‘hyper-systolic’’ algorithms with block time steps, which
achieve an OðN ffiffiffi

p
p Þ communication complexity at the cost of increased memory requirements. Finally,

Section 6 describes an application of our systolic algorithm to a problem requiring the use of a large N : the

gravitational Brownian motion of a supermassive black hole at the center of a galaxy.

2. Algorithm

In a direct-force code, the gravitational force acting on particle i is

Fi ¼ miai ¼ �Gmi

XN
k¼1

mk ri � rkð Þ
jri � rkj3

; ð3Þ

where mi is the mass of the ith particle and ri its position; G is the gravitational force constant. The

summation excludes k ¼ i.
The integration of particle orbits is based on the fourth-order Hermite scheme as described by Makino

and Aarseth [15]. We adopt their formula for computing the time step of an individual particle i at time tnow,

Dti ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

jaðtnowÞjjað2ÞðtnowÞj þ j _aaðtnowÞj2

j _aaðtnowÞjjað3ÞðtnowÞj þ jað2ÞðtnowÞj2

s
: ð4Þ

Here a is the acceleration of the ith particle, the superscript ðjÞ denotes the jth time derivative, and g is a

dimensionless constant of order 10�2; we typically set g ¼ 0:02. With a definition of individual time steps as

in Eq. (4) the computing time for the integration of typical gravitational systems is significantly reduced in

comparison with codes which do a full force calculation at each integration step [20]. Since the particle

positions rk must be up-to-date in Eq. (3) they are predicted using a low order polynomial. This prediction

takes less time if groups of particles request a new force calculation at large time intervals, rather than if

single particles request it in small time intervals. For this reason, an integer n is chosen such that

1

2

� �n

6Dti <
1

2

� �n�1

ð5Þ

with Dti given by Eq. (4). The individual time step is replaced by a block time step ðDtiÞb, where

ðDtiÞb ¼
1

2

� �n

: ð6Þ

We implement the systolic force calculation in either blocking or nonblocking mode. For the non-

blocking calculation, we have to add a buffer for storing the incoming positions and masses, one for the

outgoing positions and masses, and one compute buffer. The maximal size of these buffers is defined by

the largest particle number on one processing element. We also need input, output and compute buffers for

the forces and the time-derivatives of the forces. Since data synchronization is not critical with blocking

communication, extra input data buffering is not necessary. A positive side effect of the buffering strategy is
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that data access is far more ordered than in other implementations of the Hermite scheme. As a result, the

number of cache misses is reduced, optimizing performance.

We arrange all processors in a ring-like structure, so that each processor has a right and a left neighbor.

For the integrator to work, the individual block time step ðDtiÞb and the time of the last integration tlast;i
must be defined for each particle. Either the initialization or the integration method are required to

compute these two quantities.

Algorithm 1 (Find new group).
Search all particles i for the smallest tmin;p ¼ ðDti;pÞb þ tlast;i;p

on each computing node p.
Do a global reduce so that each processor knows the global

minimum tmin ¼ minðtmin;pÞ. Set the simulated
time to tnow ¼ tmin.

Find the particles with ðDti;pÞb þ tlast;i;p ¼ tnow
and store their index i in a list.

Predict the positions and velocities at the time

tnow for the local particles on each node.

Each processor will select a subgroup sp of the block size s ¼
P

sp. The systolic shift with blocking

communication is implemented as follows:

Algorithm 2 (Force loop (blocking communication)).
Copy the positions of the subgroups sp into the

compute buffer on each node.

foreach j in sp
Do the force calculation with respect to all local particles.
end foreach

Wait for all processors to finish their work.

Copy the masses, positions, and partial forces to the output

buffer.

Send the output buffer to the right neighbor and store the

data from the left neighbor in the compute buffer.

Do another local force calculation unless p shifts have

been done and the forces returned to their originating processor.

Utilizing nonblocking communication, the systolic loop can gain significant performance since it is

possible to transfer data while the force calculation is ongoing. The partial forces follow one cycle behind

the positions.

Algorithm 3 (Force loop (nonblocking communication)).
Copy the positions of the subgroups sp into the

compute buffer and into the output buffer on each node.

if nloops between 1 and p � 1:

Initiate the data transfer for the positions and masses to

the right node and allow data to be sent from the left neighbor

to the input buffer.

end if

if nloops between 2 and p:
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Initiate the data transfer for the forces to the right node

and allow data to be sent from the left neighbor to the input buffer.

end if

foreach j in sp
Do the force calculation with respect to all local particles.

end foreach

if nloops between 1 and p � 1:

Wait for the data transfer of particles to finish.

end if

if nloops between 2 and p:
Wait for the data transfer of the forces to finish.

Add the partial forces to the incoming forces.
end if

Increment nloops and initiate another data transfer

unless p shifts have been made.

Shift the forces to the right neighbor.

Fig. 1 shows an idealized workgraph of the nonblocking systolic force computation, assumed to be

completely calculation-dominated, which would be the case for a computer system with zero latency and

infinite bandwidth. In the example shown in Fig. 1, processor one finds s1 ¼ 30, processor two s2 ¼ 10,

processor three s3 ¼ 40, and processor four s4 ¼ 20 particles due for the force calculation. The thin vertical

Fig. 1. Workflow diagram for an ideal, calculation-dominated nonblocking systolic force computation. Time increases to the right; the

bold-faced arrows represent the work of each of the computing nodes, assumed here to be four. The dashed arrows indicate the flow of

the position information between the nodes. The steepness of the arrows indicates how much time is allowed for the data transfer.

Circles indicate the points when each processor switches from computing the partial forces from one subgroup to the next subgroup,

including the time to finalize one communication thread and initialize the next one. Vertical lines represent barriers which can only be

passed when all processes reach the same state of execution.
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lines represent barriers which all processes can only pass together. The circles represent points in time at

which a process changes from the computation of subgroup si to the next subgroup. Since all communi-

cation is in the background, switching between the subcalculations is very fast and the processing elements

do not idle. The dashed arrows represent the data flow between processors; they begin at the sending point

and terminate where the reception is finalized. The steepness indicates the maximal time allowed for data

transfer between two nodes. In Fig. 1, communication between processing elements one and two must be

carried out in a very short time as indicated by the steep inclination of the arrows. This is why, of all

communications in the force loop, the transfer of s3 between these two processors requires the highest
bandwidth. In the ideal case, however, all processes finalize the force calculation at the same time as is

shown by the second vertical bar. We discuss in the following section how closely we can reach this ideal in

typical applications.

After computing the forces we finalize the integration in the same manner as described by Makino and

Aarseth [15].

Algorithm 4 (Hermite interpolation).
Interpolate higher force derivatives F

ð2Þ
i ðtlast;iÞ and F

ð3Þ
i ðtlast;iÞ

for all particles i in group s from Fiðtlast;iÞ, _FFiðtlast;iÞ, FiðtnowÞ, and _FFiðtnowÞ.
Correct the positions of the particles i in group s using

a fourth-order Taylor polynomial.

Interpolate higher force derivatives
F
ð2Þ
i ðtnowÞ ¼ F

ð2Þ
i ðtlast;iÞ þ F

ð3Þ
i ðtlast;iÞ 	 ðDtiÞb and

F
ð3Þ
i ðtnowÞ ¼ F

ð3Þ
i ðtlast;iÞ.

Compute the new time step according to Eqs. (4)–(6).

Set tlast;i ¼ tnow.

We now have defined new block time steps ðDtiÞb and have set tlast;i for the particles in group s and can

continue the integration by selecting a new group according to Algorithm 1.

3. Factors affecting the performance

3.1. General performance aspects

The performance of systolic force calculations is dependent on the calculation speed of each processing

element and on the bandwidth of the inter-process communication network. Also important is the paral-

lelism of the calculation and the load imbalance. However, predicting these latter two quantities requires

precise knowledge of the distribution of work on the nodes and of numerous machine parameters. Some of

these parameters might also be dependent on the overall usage of the parallel computer. For these reasons

we restrict our estimates to an optimal and a worst-case scenario.

Let N be the total number of particles and s the number of particles whose coordinates are to be ad-
vanced during the current integration step. The particles to be integrated are distributed over p subgroups

of size si, 16 i6 p, such that the ith processor contributes si particles. ThusXp

i¼1

si ¼ s; ð7Þ

hsii ¼
s
p
: ð8Þ
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Note that the si need not be equal, since the number of particles due to be integrated may be different on

different processors. We assume that the time spent on force calculations is a linear function of the group

size si, and similarly that the communication time is a linear function of the amount of transported data.

The time required for the force calculation can be estimated as follows. Let sf be the time required to do

one pairwise force calculation. The total number of force calculations that one processor has to do per full

force loop is ðN=pÞs, since the processor calculates the force of its ðN=pÞ own particles against the s particles
of the group. The total time for one full force loop in the calculation-dominated regime is therefore

tf ¼
Ns
p

sf : ð9Þ

The time necessary for communicating a subset of particles si from one processor to its neighboring one

can be estimated as follows. Let sc be the time required to transfer the information for one particle to the
next processor. The latency time sl is the time it takes to set up the communication between two processors.

Within a single integration step, each processor has to establish p connections and has to send s particles.
The total communication time is therefore:

tc ¼ psl þ ssc: ð10Þ

3.2. Blocking communication

If the communication is not delegated to a communication thread, the force calculation phase for each

subgroup si is followed by a communication phase. We first consider the case that all group sizes si are the
same. Then the total time is just the sum of tf and tc, or

t ¼ Ns
p

sf þ psl þ ssc: ð11Þ

The optimal processor number is obtained when dt=dp ¼ 0, or

popt ¼
ffiffiffiffiffiffiffiffiffiffi
sf
sl
Ns

r
ð12Þ

and

topt ¼ ssc þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
sfslNs

p
: ð13Þ

We now consider the case that the block sizes si are not equal. Each shift of particles must now wait for
the processor with the largest block size smax to complete its calculation and communication. So for each

shift, the time ts is

ts ¼
N
p
smaxsf þ sl þ smaxsc ð14Þ

and after p shifts,

t ¼ Nsmaxsf þ psl þ psmaxsc: ð15Þ

Since s ¼ psi for equal si, Eq. (15) follows from Eq. (11) by substituting si with smax. Defining

smax ¼ hsii þ ðDsiÞmax ¼
s
p
þ ðDsiÞmax; ð16Þ
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we can write:

t ¼ Ns
p

sf þ psl þ ssc þ NðDsiÞmaxsf þ pðDsiÞmaxsc: ð17Þ

Setting dt=dp ¼ 0,

popt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sfNs
sl þ scðDsiÞmax

s
; ð18Þ

and the time is

topt ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nssfðsl þ scðDsiÞmaxÞ

q
þ ssc þ NðDsiÞmaxsf : ð19Þ

3.3. Nonblocking communication

On a system which allows concurrent communication and calculation, the systolic algorithm can become

more efficient, since the effective cost of communication is reduced. In this case the communication routines

return immediately after initializing the communication process. As described in more detail in Section 2,

each processor has to perform the following steps p times for each integration step:

Fig. 2. Workflow diagram for a mixed communication- and calculation-dominated systolic force calculation. In this example we have

chosen the communication time to be a linear function of the calculation time with tc;i ¼ tf ;i and sl ¼ 0. The hatched blocks symbolize

times when the processors perform the force calculations. The circles at the lower ends of these blocks denote times when the com-

munication of positional data is initiated. The ones at the upper end denote the times when the communication has completed. The

dashed arrows show the dataflow. Their steepness indicates the time needed for each communication with constant bandwidth. In

order to simplify this graph, the communication of partial forces is omitted.
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(1) Do the force calculation for the si particles of one subgroup.

(2) Simultaneously send the si particles to the next processor.

(3) Simultaneously receive the si�1 particles from the previous processor.

Each of these steps starts at the same time, but they might take different amounts of time to finish. Since
(2) and (3) behave in a quite similar way, we treat them together and call them communication. Step (1) is

called calculation. A system in which the calculation takes more time than the communication is called a

calculation-dominated system, and a system in which communication is dominant we call a communication-

dominated system. Our goal is to derive approximate expressions for the total time, calculation plus

communication, per integration step and to minimize this time.

Fig. 2 shows a communication-dominated system. In this example, sl ¼ 0 and sc ¼ sf . With this com-

munication speed and the very uneven distribution of subgroups si on the processors, it is not possible to

ensure a continuous force calculation. The time to compute the forces is dominated by the communication
of the largest group (s3 in Fig. 2). With this scenario we are able to define a threshold for the communi-

cation speed, which ensures that processors are not waiting for the communication to finish. Let tc;max be the

processor-to-processor communication time for the largest subgroup smax and tf ;min the force calculation

time for the smallest subgroup smin. Continuous calculation can be expected when

tc;max 6 tf ;min: ð20Þ

The values for the latency time and the throughput are dependent on the specific MPI implementation.

Cray T3Es typically have a two-mode implementation with algorithms for small and for large messages. On
the T3E-900 in Stuttgart, the sustained average latency and throughput has been measured to be sl ¼ 6ls
for the routines MPI_Send and MPI_Recv [16]. The MPI implementation on this machine actually has a

four-mode scheme which provides the following measured bandwidths b:

b1 P 220Mbyte=s for Lm P 8kbyte;

Fig. 3. Communication and calculation time as a function of processor number p for fixed N as derived from Eqs. (9) and (10). This

figure is only valid under the assumption of equal si.
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b2 P 300Mbyte=s for Lm P 64kbyte;

b3 P 315Mbyte=s for Lm P 256kbyte:

The quantity Lm denotes the message length. These figures show that the actual throughput is dependent on
the machine architecture, load and MPI implementation [16].

Assuming all si to be equal, a rough estimate for an optimal processor number can be given. Fig. 3 shows

that there is an optimum value p ¼ popt which minimizes the total time in this case. We find popt by setting

(9) equal to (10):

popt ¼
�ssc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s2c þ 4slsfNs

p
2sl

ð21Þ

and the total time is

topt ¼
ssc
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s2c þ 4slsfNs

q
: ð22Þ

Eqs. (22) and (21) become far simpler on machines having zero latency. With sl ¼ 0 we find

popt ¼ N
sf
sc
; ð23Þ

topt ¼ ssc: ð24Þ

This means that the systolic force loop parallelizes extremely well on such an idealized computer so that the
computing time is only dominated by the performance of the intercommunication network. However this

equation also allows the use of more processors than particles if the communication is faster than the force

calculation. We give a more detailed picture of the situation in the following.

In N -body systems with a low central concentration, i.e. small core density, s is usually proportional to

N 2=3 [15]. In our benchmarks discussed below, however, we find power-law indices of 0:55� 0:05 for the

Plummer model, 0:437� 0:105 for the Dehnen model, and 0:492� 0:110 for the Dehnen model with a

black hole. For this reason, we estimate the group sizes to be s 
 nN 1=2. The constant n can be derived for

each type of dataset from the measured values for s in Table 1.
In our scheme, a given processor may be calculation- or communication-dominated depending on the

value of si that is currently assigned to it. We can compute the time per integration loop in this more general

case by again focussing on just one processor, which carries out p operations of force calculation and

communication per loop. Each of these p operations will be either calculation- or communication-domi-

nated, requiring either a time of tf ;i or tc;i. With 16 i6 p,

tf ;i ¼
N
p
sisf ; ð25Þ

tc;i ¼ sl þ sisc; ð26Þ

Table 1

Mean group sizes for the benchmarks

Model 131 072 65 536 32 768 16 384

Plummer 172 128 89 54

Dehnen, M� ¼ 0 13.1 11.2 9.2 5.1

Dehnen, M� ¼ 0:01 6.7 4.1 2.6 2.5
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With the notion of the threshold in Eq. (20), which guarantees a continuous calculation phase, we have a

completely calculation-dominated system. Thus

tcalc ¼
Xp

i¼1

tf ;i; ð27Þ

¼ N
p
ssf ; ð28Þ

where tcalc is the computing time for calculation-dominated force loops. It is not trivial, though, to define an

optimal processor number, since the distribution of the si and the size of s is a dynamical quantity of the

integrated particle set. The result from Eq. (28) describes the ideal scaling for the force calculation which we

use below as a basis of comparison with the benchmark data.

If the threshold (20) is not fulfilled, a significant share of the computation time t comes from the

communication. Assuming a worst-case scenario, where all particles of the group s are found on only one

processor, the computation time becomes maximal:

tcomm ¼ tf;max þ
Xp

i¼1

tc;max; ð29Þ

¼ tf;max þ ptc;max; ð30Þ

where tcomm is the computing time for communication-dominated force loops. The overall calculation time

for the situation shown in Fig. 2 follows Eq. (30). We use this equation below to estimate the minimal
scaling behavior expected from our code.

3.4. Comparing the performance of the two methods

In comparison with the nonblocking algorithm, the blocking scheme does not fall behind in terms of the
parallelism. However, as long as the force computations remain calculation-dominated in the nonblocking

scheme, minor variations between the si can be levelled out so that perfect load balancing is guaranteed.

The blocking scheme is not flexible in this regard so that it builds up a penalty of the order NðDsiÞmaxsf per
force loop. Since Eq. (17) shows that there are a few particles in the blocking scheme which are treated with

a serial performance, the overall parallel efficiency is reduced. This means that a systolic loop will only give

satisfying performance when load balancing is guaranteed either on a per processor level by keeping all si
the same, or by applying nonblocking communication. This is why a nonblocking communication scheme is

superior to the blocking one.
Depending on the type of system integrated, the number of available processors, the performance of the

computer, and the total number of particles, the work load for the processors might become very small.

Small group sizes are less likely to be distributed evenly on the processes; we expect an approximately

Poisson distribution, or

ðDsiÞmax 

ffiffiffi
si

p
: ð31Þ

For the systolic algorithm, large problem sizes, together with group sizes that are larger in the mean than

the number of available processors, ensure efficient parallel performance with a systolic algorithm. In this

case one can expect an ideal linear scaling of the performance with processor number. For small problem

sizes, the amount of communication governs the the performance.
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3.5. More elaborate codes

Parallelizing an individual block time step scheme is not trivial, as the discussion above has shown.

However, is has also been shown that a fairly simple scheme can profit enormously from threaded, and

therefore nonblocking, communication. Since the overall communication time is a linear function of the

processor number in our simple scheme, attempts have been made to reduce the number of communica-

tions. The hyper-systolic codes proposed by Lippert et al. [17,18] and the broadcast method proposed by

Makino [19] can perform the force calculation by using only
ffiffiffi
p

p
communication events. However, both

methods require identical group sizes on each computing node in order to have efficient load balancing.

Individual block time step schemes select their particles to be integrated under physical criteria defined
by the simulated system. This is why a load imbalance is unavoidable in general. Assuming there is no extra

algorithm that provides a perfect distribution of the group, the expected imbalance time would be de-

pendent on the particle distribution statistics in Eq. (31). Thus

timb ¼
NðDsiÞmaxffiffiffi

p
p sf : ð32Þ

This implies that the nonblocking systolic code will outperform nonbalanced hyper-systolic or broadcast

methods unless the processor number is very large.

4. Measured performance

We evaluated the performance of the algorithms in realistic applications by using them to evolve particle

models of spherical stellar systems. The evolution was carried out for approximately one crossing time, and

the benchmarks were based on timings for 2000 integration steps. The Hermite integration scheme adjusts

the group sizes automatically as described above. All experiments were carried out on the Cray T3E at the
Goddard Space Flight Center. We compiled the executable from our C sources using the Cray standard C

compiler version 6.2.0.0 with no explicit optimization.

4.1. Initial conditions

We consider three models representing spherical stellar systems in equilibrium. The Plummer model [21]

has mass density and gravitational potential

qðrÞ ¼ 3GM
4p

b2

r2 þ b2ð Þ5=2
; ð33Þ

UðrÞ ¼ � GMffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p : ð34Þ

Here M is the total mass and b is a scale length. The many analytic properties of this model make it a

common test case for benchmarking. For the present application, the most important feature of the

Plummer model is its low degree of central concentration and its finite central density, similar to the density

profiles of globular star clusters. The Dehnen family of models [22] are characterized by a parameter c that

measures the degree of central concentration. The density profile is

qðrÞ ¼ ð3� cÞM
4p

a

rc r þ að Þ4�c ð35Þ
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with M the total mass as before and a the scale length. We chose a centrally condensed Dehnen model with

c ¼ 2, yielding a density profile similar to those of elliptical galaxies with dense stellar nuclei. The gravi-

tational potential for c ¼ 2 is

UðrÞ ¼ �GM
a

ln
r

r þ a

� �
: ð36Þ

The central density diverges as r�2 and the gravitational force diverges as r�1. Our third model had a density

equal to that of (35) with c ¼ 2 and an additional mass component consisting of a point particle at the

center representing a supermassive black hole. The mass M� of the ‘‘black hole’’ was 1% of the stellar mass

of the model. This is similar to the black-hole-to-galaxy mass ratios observed in real galaxies [23].

The initial particle velocities for the N -body realizations of our models were selected from the unique,

isotropic velocity distribution functions that reproduce qðrÞ in the corresponding potentials UðrÞ. For all of
the models we adopted units in which the gravitational constant G and the total mass of the the system M
were set to unity. The scale length a of the Dehnen model was also set to unity, while the Plummer radius b
was chosen to be 3p=16. We computed two realizations for each particle number N . The total number of

stars was N ¼ ð16384; 32768; 65536; 131072Þ.
After the integration over 2000 steps we computed the average group size during the benchmark. Table 1

summarizes the results. The centrally condensed Dehnen model systems require the use of far smaller

groups than the Plummer model. This poses a severe challenge to systolic algorithms.

4.2. Performance of the force calculation

Since the complexity of the force calculation is OðN 2Þ, compared to OðNÞ for the integrator, it is critical
to measure the impact of parallelism on this task. We present comparisons of blocking and nonblocking

systolic codes on the three datasets described above. We count 70 floating point operations per pairwise
force calculation in our implementation.

The particle blocks may have very different sizes, and accordingly the efficiency will vary from force step

to force step. For this reason we measure performance by summing the time required to carry out all force

computations in a time interval corresponding to 2000 steps, then averaging.

Figs. 4–6 show the measured speedups, expressed in terms of the number of force calculations per

second. In the case of the nonblocking algorithm, the expectation from Eq. (28), assuming a calculation-

dominated system, is

tcalc /
1

p
; ð37Þ

corresponding to a linear trend in Figs. 4–6. This dependence is recovered for each of the three models when

N is large. In the Dehnen-model runs with small N , the force calculation becomes communication-domi-

nated due to the small group sizes (Table 1) and the performance is described by Eq. (30):

tcomm / p ð38Þ

corresponding to a 1=p dependence of the speedup in Figs. 4–6. This effect is less pronounced for the
Plummer models since the mean group size is larger (Table 1). The effect is strongest for the Dehnen models

with ‘‘black hole’’ since they have the smallest group sizes (Table 1).

In comparison with the runs involving Dehnen models, the Plummer model runs show a peculiar be-

havior. For very low processor number, the performance increases linearly. However for an intermediate

number of computing nodes, the performance shows a super-linear gain until the curve becomes shallow for
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large processor numbers. This super-linearity is a result of the way in which message passing is implemented

on the T3E, which switches to a different protocol for small messages. The mean message size is inversely

proportional to the total number of processes so that we can profit from this change. As Table 1 shows, the
mean group size (which is proportional to the mean message size) is significantly smaller for the Dehnen

models explaining why the super-linearity does not occur.

Fig. 5. Same as Fig. 4, for the Dehnen model initial conditions. The dashed and solid lines show the expected scaling for calculation-

and communication-dominated systems. The performance of the non-blocking algorithm is reduced for small N due to the small group

sizes.

Fig. 4. Results of the benchmarks for the Plummer model initial conditions. The number of pairwise force calculations per second has

been plotted as a function of processor number NPE. Non-blocking and blocking algorithms are indicated via filled and open symbols

respectively, for the four different particle numbers N listed in Table 1. The dashed line shows the expected performance in the case of

an ideal, calculation-dominated system (linear speedup).
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The open symbols in Figs. 4–6 show the results for the blocking systolic algorithm. In the Plummer

model runs, the blocking code managed to calculate a little more than half the number of force pairs per

second compared with the nonblocking code. The performance difference is much more dramatic in the

Dehnen model runs due to the small group sizes: the blocking code can be as much as a factor of 10 slower

than the non-blocking code. The computing time is asymptotically constant in the Dehnen model runs since

the force calculation becomes increasingly serial for small s, as given by Eq. (17). For very large N we expect

the 1=p scaling to take over. This does not appear in the plots because of the inefficiency of the blocking
force calculation for small group sizes.

4.3. Performance of the integration

The performance of the N -body code depends also on the efficiency of the algorithm that advances the

particle positions, which we call the ‘‘integrator’’. Here we give benchmarks for the full code including the

integrator. Our performance goal is to reach a linear increase of computer wall-clock time as a function of

problem size for a constant simulation interval and optimal processor number. The unit of time in the

simulations is fixed by the gravitational constant (which is set to G ¼ 1), the total mass, and the adopted

length scale via ½T � ¼ ðGM=R3Þ�1=2
[24]. Our performance results are based on an integration using 2000

force loops. The integrated time in model units is summarized in Table 2. We carried out two integrations

for each model based on different random realizations of the initial conditions.
The performance of the blocking scheme is shown in Fig. 7, for the same values of N and NPE shown in

Figs. 4–6. We now plot performance as a function of N ; runs with the same N but different NPE are plotted

with the same symbol and their vertical scatter is an indication of how well the code benefits from par-

allelism. In the blocking scheme, the points are very localized vertically revealing that the code can not

profit much from large processor numbers. Larger problem sizes, however, are able to optimize the

computations in such a way that the scale-up is better than quadratic, the scaling in traditional direct-force

codes. With the individual time step scheme described here we expect a behavior of Ns. Since we observe an
N 1=2 behavior for the mean group size, we can expect a scale-up following a N 3=2 power law in our
benchmarks. We compare the maximal performance with increasing work load in Figs. 7 and 8 for our code

Fig. 6. Same as Fig. 5, for the Dehnen model with a central point particle (‘‘black hole’’). The influence of small group sizes is even

more striking.
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which shows a scale up between OðN 2Þ and OðN 3=2Þ on a serial machine. In our benchmarks we consider

any scaling better than that as indicating a benefit from parallel computing.

In order to quantify the scale-up, we fit the two, best-performing runs for each data set. We fit for a and

b in the following function:

twc
T

¼ Nb
tot

a
: ð39Þ

Table 2

Integrated time after 2000 force loops for the datasets used in the benchmarks

Dataset 1 2

Plummer

16 384 4:57	 10�2 5:40	 10�2

32 768 3:35	 10�2 3:08	 10�2

65 536 1:90	 10�2 2:09	 10�2

131 072 1:08	 10�2 9:95	 10�3

c ¼ 2:0;M� ¼ 0:0

16 385 1:75	 10�3 1:59	 10�3

32 769 1:08	 10�3 1:35	 10�3

65 537 5:35	 10�4 6:68	 10�4

131 073 4:11	 10�4 3:26	 10�4

c ¼ 2:0;M� ¼ 0:01

16 385 3:99	 10�4 2:63	 10�4

32 769 1:53	 10�4 1:49	 10�4

65 537 1:30	 10�4 1:36	 10�4

131 073 4:52	 10�5 8:51	 10�5

Fig. 7. Wall clock time in seconds per integrated model unit as a function of particle number N for the blocking N -body code. Different

points at given N show the performance for the various values of NPE of Figs. 4–6. For comparison we plot lines following a linear and

a quadratic N -dependence. The lines are positioned in such a way that they mark the maximal speed of the nonblocking code.
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The quantity T the integrated time in model units and twc is the wall clock time for the run. Table 3
summarizes the results for b. Since the benchmarks using the Plummer model with the nonblocking code

did not reach their maximum speedup for N ¼ 131072 and 65 536, we estimated the scale-up from the runs

with smaller particle sets only. These values are italicized in Table 3.

When measuring the overall performance of the integrator, the nonblocking communication scheme

makes much better use of the T3E than the blocking scheme: the broad vertical bands in Fig. 8 show that

the integration speed profits from increasing processor number. The two lines representing a linear and a

quadratic behavior are placed at the optimal speed levels for the runs integrating a Plummer model. For all

three types of model, a nearly linear scale-up can be observed. The exceptions are the datasets representing
a Plummer model with 131 072 and 65 536 particles. The reason for this is no bottleneck. In fact, the

nonblocking code scales so well that we could not reach the optimal performance with our maximal number

of 128 processing elements in the benchmarks.

4.4. Nonblocking vs. blocking communication

While the implementation of a systolic force calculation is simpler and more memory-efficient using

blocking communication, we have found significant performance gains using a nonblocking algorithm. The

results of our force calculation benchmarks, displayed in Figs. 4–6, show up to 10 times better performance

Fig. 8. Same as Fig. 7 for the code with nonblocking communication.

Table 3

Power-law fits of the two best performing runs in each benchmark for the blocking and nonblocking communication runs

Dataset Blocking Nonblocking

b Db b Db

Plummer 1.65 0.03 1.174 0.112

c ¼ 2:0;M� ¼ 0:0 1.702 0.006 1.16 0.03

c ¼ 2:0;M� ¼ 0:01 1.612 0.003 0.9 0.1
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for a code implementing a nonblocking systolic force calculation over one which applies a blocking scheme.

The gain is greatest when the typical particle group size is smallest. The integration as a whole can profit

more from the parallelization in the nonblocking scheme than in the blocking: we observe a scale-up close

to N 3=2 for the blocking scheme, while the nonblocking scheme clearly reaches a linear scaling. This means

by choosing an appropriate number of processors for a specific problem size, we can effectively reduce the

complexity of the direct force integration to OðNÞ.

5. Hyper-systolic force calculation with individual block time steps

5.1. Systolic and hyper-systolic matrices

Introduced by Lippert et al. [17,18], the hyper-systolic algorithm reduces communication costs in OðN 2Þ
problems by improving the communication complexity from OðNpÞ (systolic algorithm) to OðN ffiffiffi

p
p Þ. The

price paid is an increased need for memory, of order Oð ffiffiffi
p

p Þ [18].
The standard systolic algorithm is performed on a one-dimensional ring of p processors. In order to

transfer all positions and forces, p shifts of all N particles are required for each force calculation. Thus the
communication complexity is OðNpÞ.

By analogy with the systolic case, we define the vector of input data x � ðx1; x2; . . . ; xpÞ. In this definition

the xi are all data initially stored on processor pi. These data are copied to a second vector ~xx that is shifted

between the processors. (Note our assumption here that the blocksize is N=p, i.e., that every particle needs

its forces updated. We relax this assumption below.) To calculate the total forces one has to take into

account all possible pairs of xi with ~xxi. To visualize the systolic algorithm, we write down a matrix that

shows the intermediate states of ~xx at each step of the force calculation. This matrix is called the ‘‘systolic

matrix’’ S. The first line shows ~xx at shift zero, the ith line shows ~xx at shift i:

S ¼

1 2 3 4 5 6 7 8

8 1 2 3 4 5 6 7

7 8 1 2 3 4 5 6

6 7 8 1 2 3 4 5

5 6 7 8 1 2 3 4

4 5 6 7 8 1 2 3

3 4 5 6 7 8 1 2

2 3 4 5 6 7 8 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð40Þ

Local computations are done within one column of this matrix. One notices that there is some redundancy

of vertical pairs: for instance, the pair ð1; 2Þ occurs 8 times. As a result of this redundancy it is not necessary

to perform all of the shifts in order to get every possible pair of elements of x. In fact it would be sufficient

to perform just three shifts, so that we get a matrix with just four rows. This matrix is called the ‘‘hyper-

systolic matrix’’ H and is

H ¼

1 2 3 4 5 6 7 8

8 1 2 3 4 5 6 7

7 8 1 2 3 4 5 6

5 6 7 8 1 2 3 4

0
BB@

1
CCA: ð41Þ

In contrast to the matrix S, which allows us to get all pairs by comparing the first row with one of the other
rows, not all of the pairs in H have one member in the first row; for example, the pair ðx1; x4Þ requires
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comparing rows 2 and 4. Therefore all of the shifted data in the hyper-systolic algorithm must be stored on

each node in order to compute the forces. This is the reason for the increased memory requirements in

comparison with the systolic algorithm.

The hyper-systolic matrix H can be characterized by a vector called the hyper-systolic base

Ak ¼ ð0; a1; . . . ; akÞ, where ai gives the stride of the ith shift and k is the number of shifts that have to be

done. In our example of H for p ¼ 8, A3 would be:

A3 ¼ ð0; 1; 1; 2Þ: ð42Þ

To minimize the communication costs, one wants to minimize k, the number of shifts. This is a nontrivial
problem and optimization techniques have been described for achieving this aim [25].

In the following we show that the complexity of communication is Oðn ffiffiffi
p

p Þ [17]. The minimum number

of pairings required for the total force calculation is pðp � 1Þ=2. The number of possible combinations

within a column of k þ 1 elements is kþ1
2

� �
, thus:

pðp � 1Þ
2

6
k þ 1

2

� �
p ¼ ðk þ 1Þk

2
p: ð43Þ

The solution for this inequality for kP 0 is

kP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � 3

4
� 1

2

r
; ð44Þ

which we wanted to prove. However, since we do Oð ffiffiffi
p

p Þ shifts and we have to save the intermediate data,

we need Oð ffiffiffi
p

p Þ more memory on each processor than with the standard systolic algorithm.

5.2. Hyper-systolic matrix with block time steps

The hyper-systolic algorithm described by Lippert et al. [17,18] assumes that all NðN � 1Þ=2 force pairs

are to be computed at each time step. When dealing with block time steps, however, only a subset of the full

N particles are shifted at each time step, and a minimal basis like that of Eq. (41) is not sufficient to compute

the required forces. This is because the full data are only stored in the first row and data pairs constructed

using other rows only contain information about the block particles.

Nevertheless one can construct a different hyper-systolic matrix ~HH that ensures complete force calcu-

lations. For p ¼ 8 a possible matrix would be:

~HH ¼

1 2 3 4 5 6 7 8

8 1 2 3 4 5 6 7

7 8 1 2 3 4 5 6
6 7 8 1 2 3 4 5

5 6 7 8 1 2 3 4

4 5 6 7 8 1 2 3

0
BBBBBB@

1
CCCCCCA: ð45Þ

The bold figures represent full data sets and the non-bold figures indicate the block data sets. With this

matrix of shifts, one can calculate the complete forces. For example, for the first block data set, one uses

columns 2, 3, 4, and 5. The block data can be overwritten as in the systolic algorithm. The number of shifts

needed for this algorithm is 6. First the block data have to be shifted (4 shifts); then they have to be shifted
back to their home processor to add the forces (1 shift); and finally the full data sets have to be updated

(1 shift). With the standard systolic algorithm one would need 8 shifts. We pay for this advantage with a

higher amount of memory required: one more full data set has to be saved on each node.
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One can construct matrices ~HH for an arbitrary number of processors p. We call the number of total data

sets (bold rows) j and the number of block data sets ~jj. The number of rows in the matrix is

j þ ~jj ¼ k: ð46Þ

To get the full force on each block data set, its contents must be compared with every full dataset. So each

block data set has to meet each full data set during one of the shifts. For each block data set there are p � 1

full data sets to be met. Thus

j 	 ~jjP p � 1: ð47Þ

Eq. (47) allows us to find all possible combinations of j and ~jj. Table 4 gives the complete list for p ¼ 9
processing elements. For all these combinations, one can find a possible hyper-systolic matrix that guar-

antees a complete force calculation. The ~HH matrix is constructed by using the following basis vector:

Ak ¼ ð0; 1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
~jj times

zfflfflfflfflfflffl}|fflfflfflfflfflffl{blockdata

; 1; ~jj; ~jj; . . . ; ~jj|fflfflfflfflfflffl{zfflfflfflfflfflffl}
j�2 times

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{fulldata

Þ: ð48Þ

The quantity j determines the amount of memory needed, while k determines the amount of communi-

cation. This is because the number of shifts needed is ð~jj þ 1Þ þ ðj � 1Þ ¼ k (one shift for each ~jj-line, one
shift for bringing the data to their home processors and j � 1 shifts to update the full data sets).

The combination of values in the second line of Table 4 provides the fastest communication. The number
of shifts k is minimal as is the redundancy of data j. For optimal memory usage, the first line is the best

choice which leads actually to a systolic force loop. The last line in Table 4 represents the shared memory

approach where a copy of the whole dataset is kept on each processor.

We now compute the minimum number of shifts we have to perform with these algorithms. j~jj is ap-

proximately p � 1 (Eq. (47)). Substituting into Eq. (46) we get:

k ¼ p � 1

j
þ j: ð49Þ

The quantity k is the number of shifts that are to be performed. Thus we want to minimize it:

dk
dj

¼ � p � 1

j2
þ 1 ¼ 0 ð50Þ

and so

j ¼
ffiffiffiffiffiffiffiffiffiffiffi
p � 1

p
: ð51Þ

Table 4

j, ~jj and k for p ¼ 9

j ~jj k

1 8 9

2 4 6

3 3 6

4 2 6

5 2 7

6 2 8

7 2 9

8 1 9
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Thus we need
ffiffiffiffiffiffiffiffiffiffiffi
p � 1

p
full data sets on each processor. Substituting (51) into (49) we get

k ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
p � 1

p
ð52Þ

and by virtue of (46),

~jj ¼ j ¼
ffiffiffiffiffiffiffiffiffiffiffi
p � 1

p
: ð53Þ

The ~jj þ 1 shifts of the block data can be done with the nonblocking scheme described above. The j � 1

update shifts have to be done, when the force calculation is completely finished and therefore cannot be

moved to the background.

5.3. Performance

The performance of this class of algorithm will now be discussed for a blocking communication scheme.

The calculation time, from Section 3, is:

tf ¼
Ns
p

sf : ð54Þ

The communication time for one shift is sl þ ssc=p (Eq. (25)) assuming that the s block particles are dis-

tributed equally over the processors, so that si ¼ s=p. The number of shifts that have to be performed is
k ¼ j þ ~jj (Eq. (46)). Thus the total communication time is

tc ¼ k sl

�
þ s
p

sc

�
: ð55Þ

Thus, using a blocking communication scheme, the total time for one integration step is

t ¼ tc þ tf ¼ k sl

�
þ s
p
sc

�
þ Ns

p
sf : ð56Þ

In the case of minimal communication cost (Eq. (52)) the communication cost is

tc ¼ 2
ffiffiffi
p

p
sl þ 2

sffiffiffi
p

p sc; ð57Þ

where we approximate k by 2
ffiffiffi
p

p
. We get the optimal number of processors that minimize the calculation

time by setting the first derivative of p with respect to t to zero. This leads us to

p3=2optsl � p1=2optssc � Nssf ¼ 0: ð58Þ

Since the hyper-systolic codes are aimed at very massive parallel machines, we assume that p is a number of

order 100 or larger. The second term then becomes much smaller than the first one and:

popt 
 Ns
sf
sl

� �2=3

: ð59Þ

As we measure in our benchmarks, the mean group size s / N 1=2. In this case popt 
 Nðsf=slÞ2=3. So the

optimal processor number is independent of the communication bandwidth of the host computer while this
is not the case for the systolic algorithm in Eq. (21).

The performance just described is similar to that of the two-dimensional ring algorithm introduced by

Makino [19]. If we choose k ¼ 2
ffiffiffi
p

p
we get the same amount of calculation time and the same amount of

communication as his algorithm needs. Makino�s algorithm however is not strictly hyper-systolic. It is
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designed for a 2D network of processors and the systolic shifts are carried out within rows and columns of

this 2D array. Such an algorithm is far less flexible than the hyper-systolic algorithm described above, for

the following reasons. First, it only works for processor numbers p for which
ffiffiffi
p

p
is an integer. Second,

Makino�s algorithm corresponds to our hyper-systolic algorithm with j ¼ ~jj ¼ ffiffiffi
p

p
. Therefore it requires

that
ffiffiffi
p

p
full data arrays are saved on each processor. Our algorithm works with less memory without losing

communication efficiency. For example, for p ¼ 9, Makino�s algorithm needs to save 3 datasets on each

processor, while with the hyper-systolic algorithm, we can choose j ¼ 2 and ~jj ¼ 4 (Table 4). k still equals 6.
Thus the communication complexity is the same as in the case j ¼ ~jj ¼ 3 while the memory requirements
are reduced by one redundant full dataset. Also the number of shifts that cannot be done in a non-blocking

way (j � 1) is reduced.

5.4. Small group sizes and the hyper-systolic algorithm

Above we discussed the effect of small group sizes on systolic algorithms. We defined a group to be small

if not all processors provide particles to the group. We found that the systolic algorithm with nonblocking

communication is able to deal with small group sizes in such a way that, over a large percentage of time, the

force calculation is running parallel.

In a hyper-systolic scheme, the shifts of the block data can be done with blocking or nonblocking

routines. Thus the same considerations as in Section 3.4 apply. In addition we encounter a new problem: in

the hyper-systolic algorithm the particle data are not sent to each processor. For example in the case of
p ¼ 8 and a hyper-systolic matrix like in Eq. (45), calculations for particles provided by processor 1 are only

done on processors 2, 3, 4, and 5. If we only have one particle in a group, and this is provided by processor

1, then only these four processors do calculations, while the remaining four processors wait until the next

integration step. The performance would be comparable to a 4 processor parallel computation.

In general, if one chooses a hyper-systolic algorithm with the smallest communication complexity
~jj ¼

ffiffiffiffiffiffiffiffiffiffiffi
p � 1

p
(Eq. (53)) and a group size of one, then only

ffiffiffiffiffiffiffiffiffiffiffi
p � 1

p
processors are doing the computation.

If more than one but not all processors contribute particles to the group, the parallelization depends

strongly on the specific processor number. For example, in the case of matrix (45), if processors 1 and 2
provide particles, 5 processors are working in parallel. If processors 1 and 5 provide particles, then all of the

8 processors are working in parallel.

6. An application: gravitational Brownian motion

6.1. The problem

The algorithms described here are ideally suited to problems requiring large N and small to moderate
numbers of integration steps. One such problem is the Brownian motion of a massive point particle that

responds to the gravitational force from N , less-massive particles. Let M� and R be the mass and position of

the Brownian particle, m the mass of a perturber, and rj the position of the jth perturber particle. The

equations of motion are

€RR ¼ �Gm
XN
k¼1

R� rkð Þ
jR� rkj3

; ð60Þ

€rrj ¼ �Gm
XN
k¼1

rj � rk
� �
jrj � rkj3

þ GM�
R� rj
� �
jR� rjj3

; ð61Þ
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where the summation in Eq. (61) excludes k ¼ j. The total mass of the stellar system excluding the

Brownian particle is Nm � M .

This problem is relevant to the behavior of supermassive black holes at the centers of galaxies. Black

holes have masses of order 106M� KM� K 109M�, withM� the mass of the sun, compared with a total mass

of a galactic nucleus of �109M� and of an entire galaxy, �1011M�. By analogy with the fluid case, the RMS

Brownian velocity of the black hole is expected to be of order

Vrms 

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffi
m
M�

r

r
; ð62Þ

where r is the 1D velocity dispersion of stars in the vicinity of the black hole and m is a typical stellar mass.

But Brownian motion in a self-gravitating system is expected to differ from that in a fluid, for a variety of

reasons. A massive particle alters the potential when it moves and may excite collective modes in the

background. Its effective mass may differ from M� due to particles bound to it, and the force perturbations

acting on it are not necessarily localized in time. For these reasons, it is important to treat the motion of the
background particles in a fully self-consistent way, as in Eqs. (60) and (61).

Integrations involving large particle numbers are slow even with a parallel algorithm, but fortunately the

time required for a massive particle (the ‘‘black hole’’) to reach a state of energy equipartition with the stars,

Teq, is expected to be less than a single crossing time of the stellar system in which it is imbedded. We derive

this result as follows. Starting from rest, the mean square velocity of the black hole should evolve ap-

proximately as

hV 2i 
 hDv2kit; ð63Þ

where

hDv2ki ¼
8

ffiffiffiffiffiffi
2p

p

3

G2mq lnK
r

ð64Þ

(e.g., [26]). Here q is the mass density of stars and lnK is the Coulomb logarithm, which is of order unity for

this case [10] and will henceforth be set equal to one. The time Teq required for hV 2i to reach its expected

equilibrium value of �ðm=MÞr2 is therefore

Teq 

m
M�

r2

hDv2ki

 r3

G2M�q
: ð65Þ

This may be written

Teq 
 TD
Mgal

M�

� �
q
hqi

� ��1

ð66Þ

where hqi is the mean density of the galaxy within its half-mass radius R1=2 and TD � R1=2=r, the crossing

time within that radius.

A typical environment for a supermassive black hole is at the center of a galaxy in which the stellar

density varies as

q 
 hqi r
R1=2

� ��c

ð67Þ

with 1K cK 2 [27]. Thus

Teq 
 TD
Mgal

M�

� �
r

R1=2

� �c

: ð68Þ
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To estimate the second factor in parentheses, we assume that the stars that most strongly affect the motion

of the black hole are within a distance r 
 GM�=r2 
 ðM�=MgalÞR1=2, the classical radius of influence of the

black hole [29]. Then

Teq 
 TD
M�

Mgal

� �0:5

; ð69Þ

where c has been set equal to 1:5, roughly the value characterizing the stellar density cusp surrounding the

Milky Way black hole [28]. Setting M�=Mgal � 10�3 [23], we find Teq � TD=30. We stress that this result is

very approximate, since it is based on diffusion coefficient derived assuming an infinite homogenous me-

dium. Eq. (69) nevertheless suggests that a massive particle will reach energy equipartition with the ‘‘stars’’

in less than one crossing time of the stellar system. Note that this result is independent of the masses of the
perturbing particles and hence of N . However the predicted value of the equilibrium velocity dispersion of

the black hole does depend on m=M� (cf. Eq. (62)). We evaluate this dependence below via numerical

experiments.

6.2. The experiments

We constructed initial conditions by distributing N ¼ 106, equal-mass particles representing the stars

according to Dehnen�s law (35) with c ¼ 1:5,

qðrÞ ¼ 3M
8p

a

r1:5ðr þ aÞ2:5
ð70Þ

and a central point of mass M� representing the black hole. The value chosen for the slope of the central

density cusp, c ¼ 1:5, is similar to the value near the center of the Milky Way galaxy [28]. The velocities of

the ‘‘star’’ particles were selected from the unique isotropic distribution function that reproduces a steady-

state Dehnen density law in the presence of a central point mass [30]. The initial velocity of the black hole

particle was set to zero. We carried out integrations for five different values of the black hole mass,

M� ¼ ð0:00001; 0:0001; 0:001; 0:01; 0:1Þ in units where the total massM in ‘‘stars’’ is unity. The gravitational
constant G and the Dehnen-model scale length a were also set to one. Integrations were carried out until a

time of tmax ¼ 0:1, compared with a crossing time for the overall system of a=r 
 1. All runs were made

using 128 processors on the Cray T3E 900 supercomputer in Stuttgart. The average wall clock computing

time per simulation was 136 h.

Fig. 9 shows the time dependence of the squared velocity of the black hole particle, V 2ðtÞ, for each of the

runs. The motion appears to reach a statistical steady state in much less than one crossing time, as expected,

and the inverse dependence of hV 2i on M� is apparent. There were no discernable changes in the spatial or

velocity distribution of the ‘‘star’’ particles during these runs outside of the region where the black hole
wandered.

Fig. 10 shows Vrms as a function of M� for each of the runs. Vrms was computed by averaging V 2ðtÞ over
the full integration interval. From Eq. (62), and setting m ¼ 1=N ¼ 10�6, we expect

Vrms 
 1:73	 10�3rM�0:5
� ; ð71Þ

where r is the 1D velocity dispersion of stars in the vicinity of the black hole particle. However it is not clear

what value of r should be used in this formula, since the velocity dispersion of the stars is a function of

radius in the initial models: r increases toward the center to a maximum of �0.42 at a radius of � 0:2, then
drops slowly inward before rising again as r2 
 2=5r within the radius of influence of the black hole. Using

the peak value of r in the black-hole-free Dehnen model, r ¼ 0:42, Eq. (71) predicts

Vrms 
 7:27	 10�4M�0:5
� : ð72Þ
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This line is shown in Fig. 10. The measured values of Vrms are consistent with this prediction, although there

is a hint that the dependence of Vrms on M� is slightly less steep than M�0:5
� . This result suggests that

gravitational Brownian motion may be very similar to its fluid counterpart. In particular, we note that Vrms

Fig. 9. Time evolution of the squared velocity of the massive (‘‘black hole’’) particle in the Brownian motion experiments. The

background stellar system consists of N ¼ 106 particles of mass m ¼ 10�6 distributed according to a Dehnen density law, Eq. (70). The

mass M� of the black hole particle increases downward by a factor of 10 between each frame, from M� ¼ 10�5 at the top to M� ¼ 10�1

at the bottom. The black hole particle is started at rest and rapidly comes into energy equipartition with the lighter particles. The

amplitude of its random motion varies inversely with its mass as expected from energy equipartition arguments.
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is correctly predicted by Eq. (62) if one uses a value for r in that equation that is measured well outside of

the region of gravitational influence of the black hole. This suggests that most of the perturbations leading
to the black hole�s motion come from distant stars.

We can use our results to estimate the random velocity of the supermassive black hole at the center of the

Milky Way galaxy. It has recently become feasible to measure the motion of the Milky Way black hole

[31,32], whose mass is M� 
 2:5–3:5	 106M� [33–35], roughly 10�3 times the mass of the Milky Way bulge

[23]. The masses of stars in the cluster surrounding the black hole are of order 10� 20M� [36]. We adopt

r 
 100 km s�1, roughly the peak velocity dispersion measured for the stars in the Milky Way bulge outside

of the region of influence of the black hole [37]; here we make use of our result that the Brownian velocity in

the N -body simulations is correctly predicted by Eq. (62) when r is replaced by its peak value outside of the
region of influence of the central black hole. The resulting prediction for the 3D random velocity of the

Milky Way black hole is

Vrms 
 0:40
m�

15M�

� �1=2 M�

3	 106M�

� ��1=2

kms�1: ð73Þ

Fig. 10. RMS velocity of the ‘‘black hole’’ particle in the Brownian motion experiments. Vrms was computed using the average value of

V 2ðtÞ between t ¼ 0 and t ¼ 0:1. Dashed line is the predicted relation based on energy equipartition arguments (see text). m is the mass

of a ‘‘star’’ particle.
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The predicted velocity could be much greater than 0:4 km s�1 if the objects providing the force perturba-

tions are much more massive than 10M�, e.g., giant molecular clouds. Current upper limits on the proper

motion (2D) velocity of the Milky Way black hole are � 20 km s�1 [31,32].

7. Conclusions

We have introduced two variants of a systolic algorithm for parallelizing direct-summation N -body
codes implementing individual block time step integrators: the first with blocking communication, and the

second with non-blocking communication. Performance tests were carried out using N -body models similar

to those commonly studied by dynamical astronomers, in which the gravitational forces vary widely be-

tween core and halo and for which the particle block sizes are typically very small. The nonblocking scheme

was found to provide far better performance than the blocking scheme for such systems, providing a nearly

ideal speedup for the force calculations. By engaging a sufficient number of computing nodes, particle

numbers in excess of 106 are now feasible for direct N -body simulations. For parallel machines with very

large processor numbers, we describe the implementation of a hyper-systolic computing scheme which
provides a communication scaling of Oð ffiffiffi

p
p Þ at the expense of increased memory demands.

The algorithms described here are not well suited to dealing with the formation of close, bound pairs of

particles (binaries). A standard way of dealing with binaries is via regularization [2]. In a future paper, we

will discuss the implementation of regularization schemes in systolic algorithms.

The codes used to write this paper are available for download at: http://www.physics.rut-

gers.edu/marchems/download.html.
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